Typical Applications

The HMC1113LP5E is ideal for:
- Point-to-Point and Point-to-Multi-Point Radios
- Military Radar, EW & ELINT
- Satellite Communications
- Maritime & Mobile Radios

Features

- Conversion Gain: 12 dB
- Image Rejection: 25 dBc
- LO to RF Isolation: 45 dB
- Noise Figure: 1.8 dB
- Input IP3: 1 dBm
- 32 Lead 5 x 5 mm SMT Package

General Description

The HMC1113LP5E is a compact GaAs MMIC I/Q downconverter in a leadless 5 x 5 mm low stress injection molded plastic surface mount package. This device provides a small signal conversion gain of 12 dB with a noise figure of 1.8 dB and 25 dBc of image rejection. The HMC1113LP5E utilizes an LNA followed by an image reject mixer which is driven by an LO buffer amplifier. The image reject mixer eliminates the need for a filter following the LNA, and removes thermal noise at the image frequency. I/Q mixer outputs are provided and an external 90° hybrid is needed to select the required sideband. The HMC1113LP5E is a much smaller alternative to hybrid style image reject mixer downconverter assemblies, and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.

Electrical Specifications, \(T_i = +25 \, ^\circ C \), \(IF = 500 \, MHz, \, LO = 6 \, dBm, \, VD1 = VD2 = 3V, \, VD3 = 4V, \, USB \) [1]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>IF Frequency Range</td>
<td>DC</td>
<td>3.5</td>
<td>DC</td>
<td>3.5</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Conversion Gain</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>1.8</td>
<td>2.5</td>
<td>1.8</td>
<td>2.5</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>25</td>
<td></td>
<td></td>
<td>dBc</td>
</tr>
<tr>
<td>1 dB Compression (Input)</td>
<td>-7</td>
<td></td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>LO to RF Isolation</td>
<td>35</td>
<td>45</td>
<td>25</td>
<td>35</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>LO to IF Isolation</td>
<td>22</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>IP3 (Input)</td>
<td>0.5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Amplitude Balance [2]</td>
<td>±1</td>
<td></td>
<td>±1</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Phase Balance [2]</td>
<td>±6</td>
<td></td>
<td>±6</td>
<td></td>
<td></td>
<td></td>
<td>Deg</td>
</tr>
<tr>
<td>Supply Current (ID1 + ID2)</td>
<td>60</td>
<td>80</td>
<td>60</td>
<td>80</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply Current (ID3)</td>
<td>100</td>
<td>120</td>
<td>100</td>
<td>120</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

[1] Unless otherwise noted all measurements performed as downconverter.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No Warranties are granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106. Phone: 781-329-4700 • Order online at www.analog.com

Application Support: Phone: 1-800-ANALOG-D
HMC1113* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
• HMC1113LP5 Evaluation Board

DOCUMENTATION
Data Sheet
• HMC1113LP5E: GaAs MMIC I/Q Mixer Downconverter, 10 - 16 GHz Data Sheet

TOOLS AND SIMULATIONS
• HMC1113 S-Parameters

REFERENCE MATERIALS
Quality Documentation
• Package/Assembly Qualification Test Report: LP3, LP4, LP5 & LP5G (QTR: 2014-00145)
• Semiconductor Qualification Test Report: PHEMT-A (QTR: 2013-00267)

Technical Articles
• The Changing Landscape of Frequency Mixing Components

DESIGN RESOURCES
• HMC1113 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all HMC1113 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
HMC1113LP5E
GaAs MMIC I/Q MIXER
DOWNCONVERTER, 10 - 16 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 500 MHz, USB

Conversion Gain vs. Temperature

Conversion Gain vs. LO Drive

Image Rejection vs. Temperature

Image Rejection vs. LO Drive

Input IP3 vs. Temperature

Input IP3 vs. LO Power

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC1113LP5E

GaAs MMIC I/Q MIXER
DOWNCONVERTER, 10 - 16 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 500 MHz, USB

Input P1dB vs. Temperature

Input P1dB vs. LO Power

Noise Figure vs. Temperature

IF = 500 MHz

Noise Figure vs. LO Power

IF = 500 MHz

Noise Figure vs. Temperature

LO = 12 GHz

Noise Figure vs. LO Power

LO = 12 GHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC1113LP5E

GaAs MMIC I/Q MIXER

DOWNCONVERTER, 10 - 16 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 500 MHz, USB

Noise Figure vs. IF Frequency

Isolations [1]

Amplitude Balance vs. LO Power [1]

Phase Balance vs. LO Power [1]

IF Bandwidth

Return Loss [1]

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
GaAs MMIC I/Q MIXER
DOWNCONVERTER, 10 - 16 GHz

Data Taken as SSB Downconvertor with External IF 90° Hybrid, IF = 2000 MHz, USB

Conversion Gain vs. Temperature

Conversion Gain vs. LO Drive

Image Rejection vs. Temperature

Image Rejection vs. LO Drive

Input IP3 vs. Temperature

Input IP3 vs. LO Power
Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1800 MHz, USB
Noise Figure vs. Temperature
IF = 1800 MHz

![Graph showing noise figure vs. temperature for HMC1113LP5E GaAs MMIC I/Q mixer downconverter.]
GaAs MMIC I/Q MIXER
DOWNCONVERTER, 10 - 16 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 3500 MHz, USB

Conversion Gain vs. Temperature

Conversion Gain vs. LO Drive

Image Rejection vs. Temperature

Image Rejection vs. LO Drive

Input IP3 vs. Temperature

Input IP3 vs. LO Power

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
GaAs MMIC I/Q MIXER
DOWNCONVERTER, 10 - 16 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 3500 MHz, USB

Noise Figure vs. Temperature
IF = 3500 MHz

Noise Figure vs. LO Power
IF = 3500 MHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 5, 7, 8, 9, 13, 14, 15, 16, 22, 23, 24, 25, 26, 27, 30, 31, 32</td>
<td>N/C</td>
<td>These pins are not connected internally. However, all data shown herein was measured with these pins connected to RF/DC ground externally.</td>
<td></td>
</tr>
<tr>
<td>2, 4, 10, 12, 17, 19, 21</td>
<td>GND</td>
<td>These pins and the exposed ground paddle must be connected to RF/DC ground.</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>RF</td>
<td>This pin is AC coupled and matched to 50 Ohms.</td>
<td>RF</td>
</tr>
<tr>
<td>6</td>
<td>VD3</td>
<td>Power Supply for LO amplifier.</td>
<td>VD3</td>
</tr>
<tr>
<td>11</td>
<td>LO</td>
<td>This pin is AC coupled and matched to 50 Ohms.</td>
<td>LO</td>
</tr>
<tr>
<td>18</td>
<td>IF2</td>
<td>Differential IF input pins. For applications not requiring operation to DC, an off chip DC blocking capacitor should be used. For operation to DC this pin must not source/sink more than 3 mA of current or part non function and possible part failure will result.</td>
<td>IF1, IF2</td>
</tr>
<tr>
<td>20</td>
<td>IF1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28, 29</td>
<td>VD2, VD1</td>
<td>Voltage bias for LNA.</td>
<td>VD1, VD2</td>
</tr>
</tbody>
</table>

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC1113LP5E

GaAs MMIC I/Q MIXER
DOWNCONVERTER, 10 - 16 GHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input</td>
<td>+8 dBm</td>
</tr>
<tr>
<td>LO Input</td>
<td>+10 dBm</td>
</tr>
<tr>
<td>VD1, VD2</td>
<td>+4.5 V</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>175 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T = 85 °C) (derate 11.84 mW/°C above 85 °C)</td>
<td>1.066 W</td>
</tr>
<tr>
<td>Thermal Resistance (channel to ground paddle)</td>
<td>84.64 °C/W</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 0, passed 150 V</td>
</tr>
</tbody>
</table>

Outline Drawing

- **Top View**
- **Bottom View**

Package Information

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC1113LP5E</td>
<td>RoHS-compliant Low Stress Injection Molded Plastic</td>
<td>100% matte Sn</td>
<td>MSL3</td>
<td>H1113 XXXX</td>
</tr>
</tbody>
</table>

[1] 4-Digit lot number XXXX

NOTES:
1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY.
3. LEAD AND GROUND PADDLE PLATING: 100% Matte Tin.
4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
6. CHARACTERS TO BE HELVETICA MEDIUM, 0.25 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
7. PAD BURN LENGTH SHALL BE 0.15mm MAX. PAD BURN HEIGHT SHALL BE 0.25mm MAX.
8. PACKAGE WARP SHALL NOT EXCEED 0.05m.
9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB BY GROUND.
10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAYOUT PATTERN.

ELECTROSTATIC SENSITIVE DEVICE

OBSERVE HANDLING PRECAUTIONS

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106

Phone: 781-329-4700 Order online at www.analog.com

Application Support: Phone: 1-800-ANALOG-D
The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

List of Materials for Evaluation PCB EV1HMC1113LP5[1]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 - J2</td>
<td>SCD, COMP, SMA Connector, SRI</td>
</tr>
<tr>
<td>J3 - J4</td>
<td>SCD, COMP, SMA Connector, JOHNSON</td>
</tr>
<tr>
<td>C1 - C3</td>
<td>100 pF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C4 - C6</td>
<td>10000 pF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C7 - C9</td>
<td>2.2 uF Capacitor, CAP TANT.</td>
</tr>
<tr>
<td>R1 - R2</td>
<td>0 Ohm Resistor, 0402 Pkg.</td>
</tr>
<tr>
<td>U1</td>
<td>HMC1113LP5E</td>
</tr>
<tr>
<td>PCB[1]</td>
<td>111225 Evaluation Board</td>
</tr>
</tbody>
</table>

[1] Circuit Board Material: Rogers 4350 or Arlon 25FR