

N-channel 400 V, 4.5 Ω typ., 0.43 A, SuperMESH™ Power MOSFET in a PowerFLAT™ 5x5 package

Datasheet - production data

Features

Order code	VDS	RDS(on) max.	ID	Ртот
STL3NK40	400 V	5.5 Ω	0.43 A	2.5 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized

Applications

• Switching applications

Description

This high voltage device is an N-channel Power MOSFET developed using the SuperMESH[™] technology by STMicroelectronics, an optimization of the well-established PowerMESH[™]. In addition to a significant reduction in on-resistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1: Device summary

AM16048v1

Order code	Marking	Package	Packing
STL3NK40	3NK40	PowerFLAT™ 5x5	Tape and reel

DocID16246 Rev 3

This is information on a product in full production.

Figure 1: Internal schematic diagram

D

D

[1] G

D

D

Pin

Drain

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x5 package information	10
5	Revisio	n history	12

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	400	V
V _{DGR}	Drain-gate voltage (R_{GS} = 20 k Ω)	400	V
V _{GS}	Gate-source voltage	± 20	V
L_ (1)	Drain current (continuous) at T _{pcb} = 25 °C	0.43	А
ID(**	Drain current (continuous) at $T_{pcb} = 100 \text{ °C}$	0.27	А
I _{DM} ⁽²⁾	Drain current (pulsed)	1.72	А
Ртот ⁽¹⁾	Total dissipation at $T_{pcb} = 25 \text{ °C}$	2.5	W
dv/dt (3)	Peak diode recovery voltage slope	4.5	V/ns
Tj	Operating junction temperature range		ŝ
T _{stg}	Storage temperature range	- 55 to 150	

Notes:

 $^{(1)}When$ mounted on FR-4 board of 1 inch², 2 oz Cu (t < 100 s).

⁽²⁾Pulse width limited by safe operating area.

 $^{(3)}I_{SD} \leq 0.43$ A, di/dt ≤ 200 A/µs; V_DD< 320 V.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

 $^{(1)}When$ mounted on 1 inch² FR-4 board, 2 oz Cu (t < 100 s).

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _{jmax} .)	0.43	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	60	mJ

2 **Electrical characteristics**

 $T_C = 25$ °C unless otherwise specified

Table 5. Onvolt-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	400			V
IDSS Zero-gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 400 V$			1	μA	
	$V_{GS} = 0 V, V_{DS} = 400 V$ T _c = 125 °C ⁽¹⁾			50	μA	
I _{GSS}	Gate body leakage current	$V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = \pm 20 \text{ V}$			±10	μA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \ \mu A$	0.8	1.6	2	V
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I_D = 0.22 A		4.5	5.5	Ω

Table 5: On/off-state

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	128	200	pF
Coss	Output capacitance	$V_{DS} = 25 V, f = 1 MHz,$ $V_{CS} = 0 V$	-	16	30	pF
Crss	Reverse transfer capacitance	V83 – V V	-	4	6	pF
Rg	Gate input resistance	f = 1 MHz gate DC bias = 0 test signal level = 20 mV open- drain	-	12		pF
Qg	Total gate charge	$V_{DD} = 320 \text{ V}, \text{ I}_{D} = 1.4 \text{ A}$	-	8.7	13	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	0.9	-	nC
Q _{gd}	Gate-drain charge	(see Figure 13: "Test circuit for gate charge behavior")	-	3.8	-	nC

Table 6: Dynamic

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 200 V, I_D = 0.7 A,	-	3	-	ns
tr	Rise time	$R_G = 4.7 \Omega$	-	4	-	ns
t _{d(off)}	Turn-off delay time	$V_{GS} = 10 V$	-	18	-	ns
t _f	Fall time	circuit for resistive load switching times" and Figure 17: "Switching time waveform")	-	16	-	ns

	Table 8: Source-drain diode					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		0.43	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		1.72	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 0.43 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.2	V
t _{rr}	Reverse recovery time	IsD = 1.4 A, di/dt = 100 A/µs,V _{DD} = 20 V (see Figure 14: "Test circuit for inductive load switching and diode recovery times")		166		ns
Q _{rr}	Reverse recovery charge			300		nC
I _{RRM}	Reverse recovery current			3.6		А
t _{rr}	Reverse recovery time	$I_{SD} = 1.4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s V}_{DD} = 20 \text{ V},$ $T_j = 150 \text{ °C}$ (see Figure 14: "Test circuit for inductive load switching and diode recovery times")		176		ns
Qrr	Reverse recovery charge			340		nC
I _{RRM}	Reverse recovery current			3.8		А

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 µs, duty cycle 1.5%.

DocID16246 Rev 3

Electrical characteristics

57

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information

Table 9: PowerFLAT 5x5 package mechanical data			
Dim		mm	
Diin.	Min.	Тур.	Max.
А	0.80		1.0
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D		5.00	
D1	4.05		4.25
E		5.00	
E1	0.64		0.79
E2	2.25		2.45
е		1.27	
L	0.45		0.75

Revision history 5

Table 10: Document revision history

Date	Revision	Changes
18-Sep-2009	1	First release.
29-Aug-2013	2	Updated: Section 4: Package mechanical data Minor text changes
20-Feb-2017	3	Removed PowerFLAT [™] 5x5 type C package information and cover image. Updated <i>Table 6: "Dynamic"</i> and <i>Table 8: "Source-drain diode".</i> Updated <i>Section 2.1: "Electrical characteristics (curves)".</i> Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

