

Is Now Part of

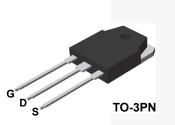
ON Semiconductor®

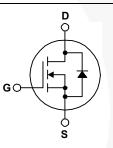
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

N-Channel SuperFET[®] FRFET[®] MOSFET 600 V, 20 A, 190 mΩ

Features


- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 150 mΩ
- Fast Recovery Type (Typ. T_{rr} = 160 ns)
- Ultra Low Gate Charge (Typ. Q_g = 75 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 165 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- LCD / LED / PDP TV
- Solar Inverter
- AC-DC Power Supply

Description

SuperFET[®] MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

Absolute Maximum Ratings Tc = 25°C unless otherwise noted.

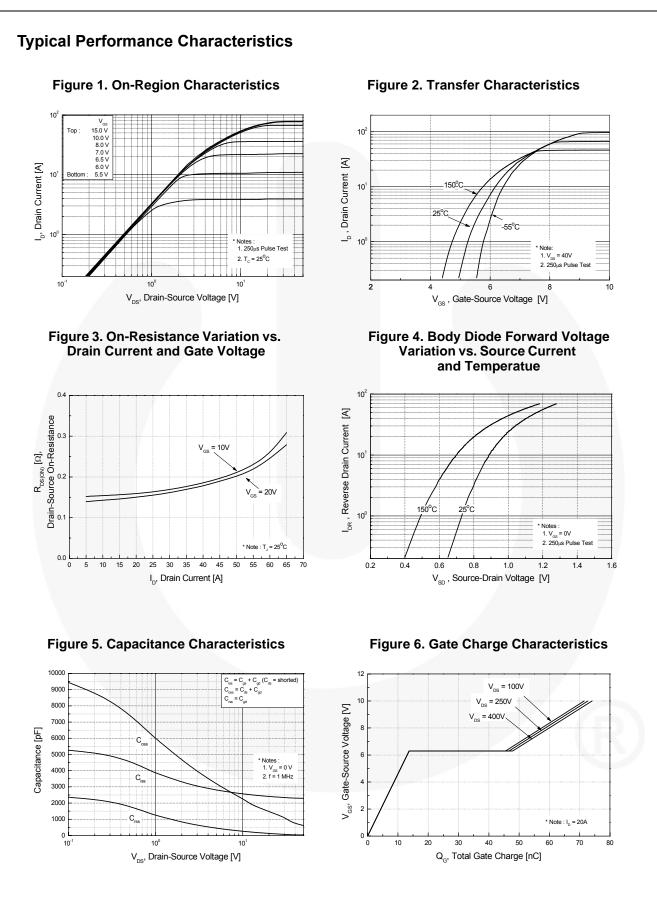
Symbol	Parameter		FCA20N60F	Unit	
V _{DSS}	Drain-Source Voltage		600	V	
ID	Drain Current - Continuous (T _C = 25 - Continuous (T _C = 10		20 12.5	A A	
I _{DM}	Drain Current - Pulsed	(Note 1)	60	A	
V _{GSS}	Gate-Source voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	690	mJ	
I _{AR}	Avalanche Current	(Note 1)	20	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	20.8	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	50	V/ns	
P _D	Power Dissipation (T _C = 25°C) - Derate . bove 25°C		208 1.67	W W/°C	
T _{J,} T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C	

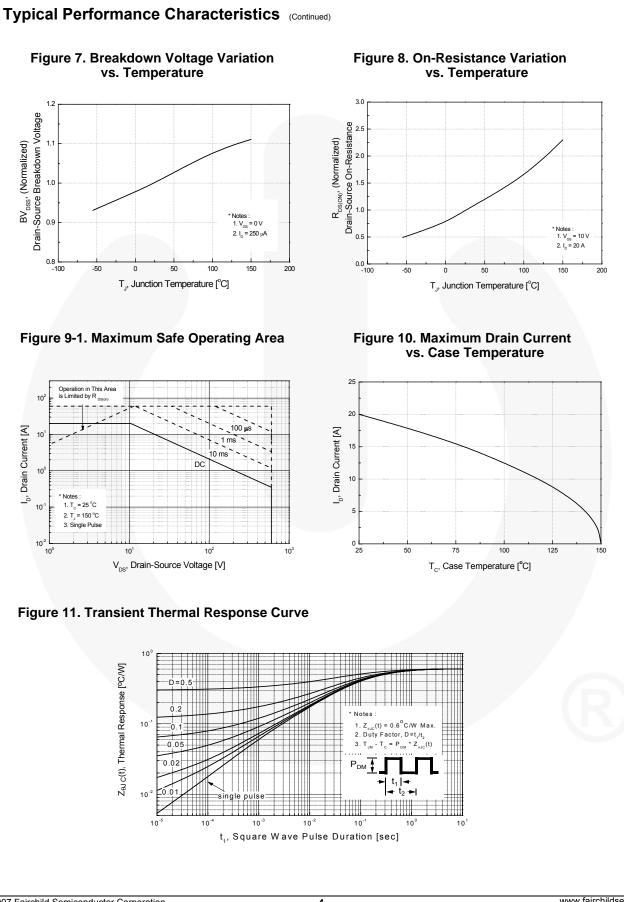
Thermal Characteristics

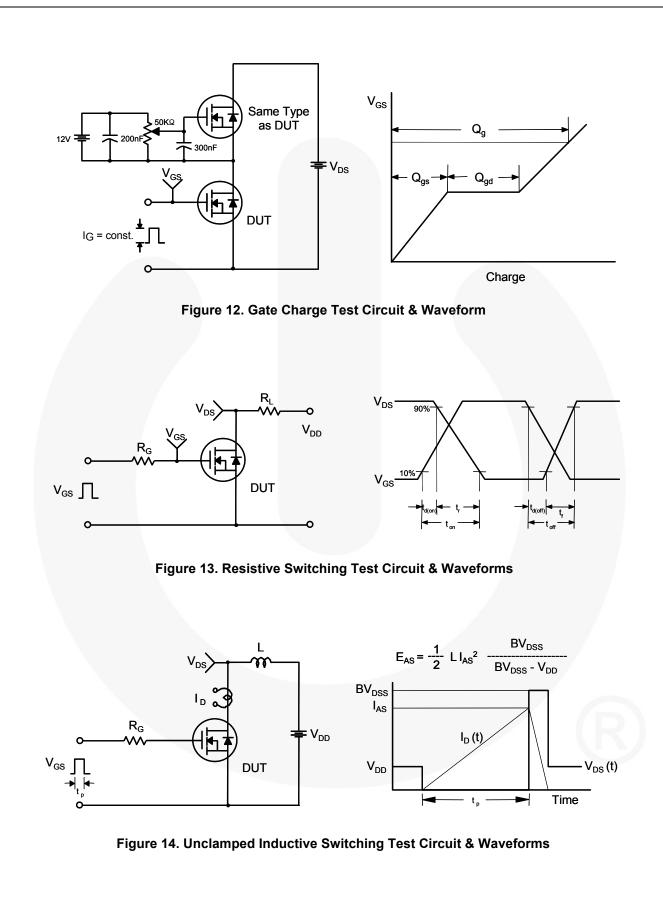
Symbol	Parameter	FCA20N60F	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.6	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	40	°C/W	

May 2014

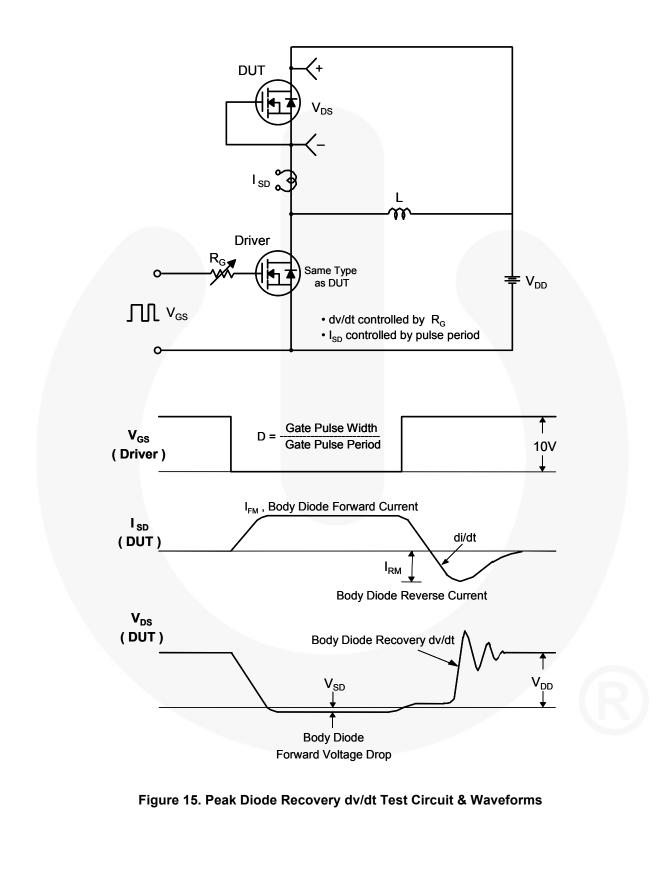
Part Number Top Ma		Top Mark	Package	Packing Method	Reel Size	Ta	pe Width	ו Qu	antity	
FCA20	FCA20N60F FCA20N60F		TO-3PN	TO-3PN Tube N/A		N/A		30	30 units	
=lectric:	al Chara	acteristics T - 200	C uploss otherwi	a noted						
Symbol	ectrical Characteristics T _C = 25°C unle mbol Parameter			Conditions		Min.	Тур.	Max.	Unit	
Off Charac	teristics								<u> </u>	
BV _{DSS}	Drain-Sour	ce Breakdown Voltage	V _{GS} =	V _{GS} = 0 V, I _D = 250 μA, T _J = 25°C					V	
			V _{GS} =	$V_{GS} = 0 V, I_D = 250 \mu A, T_J = 150^{\circ}C$			650		V	
ΔΒV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient		I _D = 28	$I_D = 250 \ \mu$ A, Referenced to 25°C			0.6		V/°C	
BV _{DSS}	Drain-Sour Voltage	ce Avalanche Breakdow	anche Breakdown $V_{GS} = 0 V, I_D = 20 A$			700		V		
I _{DSS}	Zero Gate Voltage Drain Current			$V_{DS} = 600 V, V_{GS} = 0 V,$ $V_{DS} = 480 V, T_{C} = 125^{\circ}C$				10 100	μΑ μΑ	
I _{GSSF}	Gate-Body	Leakage Current, Forwa	ard V _{GS} =	30 V, V _{DS} = 0V				100	nA	
I _{GSSR}	Gate-Body	Leakage Current, Reve	rse V _{GS} =	-30 V, V _{DS} = 0V				-100	nA	
On Charac	teristics									
V _{GS(th)}	Gate Threshold Voltage $V_{DS} = V_{GS}, I_D =$		V _{GS} , I _D = 250 μA		3.0		5.0	V		
R _{DS(on)}	Static Drain-Source On-Resistance		V _{GS} =	V _{GS} = 10 V, I _D = 10 A			0.15	0.19	Ω	
9 _{FS}	Forward Tr	ransconductance	V_{DS} =	40 V, I _D = 10 A			17		S	
Dynamic C	haracterist	ics								
C _{iss}	Input Capa	citance		$V_{DS} = 25 V, V_{GS} = 0 V,$ f = 1.0 MHz			2370	3080	pF	
C _{oss}	Output Ca	pacitance	f = 1.0				1280	1665	pF	
C _{rss}	Reverse T	ransfer Capacitance					95		pF	
C _{oss}	Output Ca	pacitance	V _{DS} =	V_{DS} = 480 V, V_{GS} = 0 V, f = 1.0 MHz			65	85	pF	
C _{oss} eff.	Effective Output Capacitance		V _{DS} =	V_{DS} = 0 V to 400 V, V_{GS} = 0 V			165		pF	
Switching	Characteris	tics								
t _{d(on)}	Turn-On D	elay Time		$\label{eq:VDD} \begin{array}{c} V_{DD} = 300 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \\ R_{G} = 25 \Omega \end{array}$			62	135	ns	
t _r	Turn-On R	ise Time	R _G = 2				140	290	ns	
t _{d(off)}	Turn-Off D	elay Time					230	470	ns	
t _f	Turn-Off Fa	all Time					65	140	ns	
Qg	Total Gate	Charge		$V_{DS} = 480 \text{ V}, \text{ I}_{D} = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4)			75	98	nC	
Q _{gs}	Gate-Sour	ce Charge	V _{GS} =				13.5	18	nC	
Q _{gd}	Gate-Drain	Charge					36		nC	
Drain-Sour	ce Diode C	haracteristics and Max	imum Rating	IS				1	<u> </u>	
I _S	Maximum Continuous Drain-Source Diode Forward Current					20	Α			
I _{SM}	Maximum	Pulsed Drain-Source Dic	de Forward (Current				60	А	
V _{SD}	Drain-Sour	ce Diode Forward Voltag	ge V _{GS} =	0 V, I _S = 20 A				1.4	V	
t _{rr}		ecovery Time	V _{GS} =	$V_{GS} = 0 V, I_{S} = 20 A,$ dI _F /dt = 100 A/µs			160		ns	
Q _{rr}		ecovery Charge	dl _F /dt				1.1		μC	

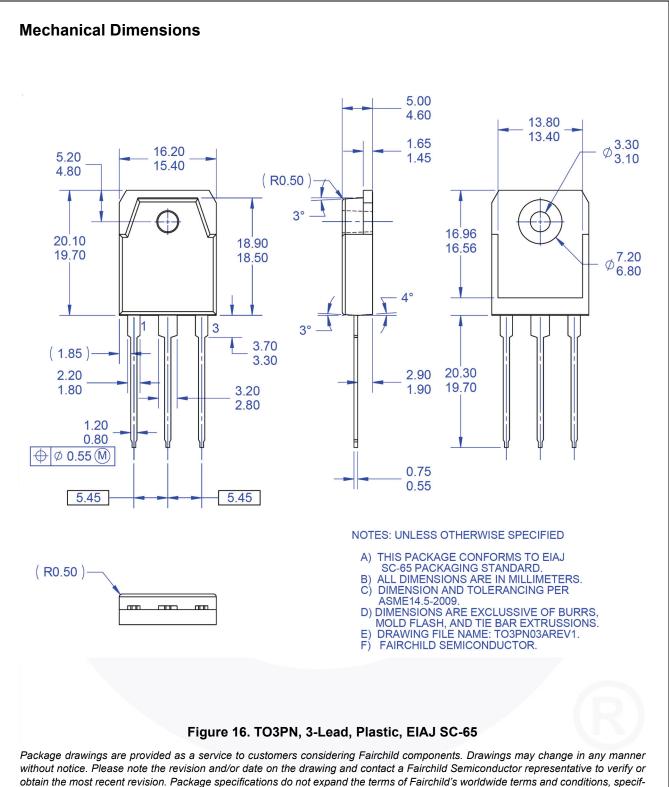

1. Repetitive rating: pulse-width limited by maximum junction temperature.


2. I_{AS} = 10 A, V_{DD} = 50 V, R_{G} = 25 $\Omega,$ starting T_{J} = 25°C.


3. $I_{SD} \le 20$ A, di/dt ≤ 1200 A/µs, $V_{DD} \le BV_{DSS}$, starting T_J = 25°C.

4. Essentially independent of operating temperature typical characteristics.


FCA20N60F — N-Channel SuperFET[®] FRFET[®] MOSFET



FCA20N60F — N-Channel SuperFET[®] FRFET[®] MOSFET

FCA20N60F — N-Channel SuperFET[®] FRFET[®] MOSFET

ically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3PN-003

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC