HMC1110

GaAs MMIC X6 ACTIVE FREQUENCY MULTIPLIER, 71 - 86 GHz

Typical Applications
The HMC1110 is ideal for:
- Point-to-Point & VSAT Radios
- Test Instrumentation
- Military & Space
- Sensors

Features
- High Output Power: +13 dBm
- Low Input Power Drive: 0 to +6 dBm
- 5Fo Harmonic Isolation: +25 dBc
- 7Fo Harmonic Isolation: +40 dBc
- Die Size: 2.44 x 1.35 x 0.1 mm

General Description
The HMC1110 is a x6 active broadband frequency multiplier chip utilizing GaAs pHEMT technology. When driven by a +4 dBm signal, the multiplier provides +13 dBm typical output power from 71 to 86 GHz. The 5Fo and 7Fo harmonic isolations with respect to the output signal level are +25 dBc and +40 dBc respectively. The HMC1110 is ideal for use in LO multiplier chains for Pt-to-Pt & VSAT Radios yielding reduced parts count by integrating input and output amplifiers vs. traditional approach which uses discrete components. All data is taken with the chip connected via two 0.025mm (1 mil) wire bonds of minimal length 0.31 mm (12 mils).

Electrical Specifications, \(T_A = +25 \, ^\circ C \),

\[
VD_{\text{AMP}1} = VD_{\text{AMP}2} = 4V, VD_{\text{MULT}} = 1.5V, 4 \text{ dBm Drive Level} [1] [2]
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range, Input</td>
<td>11.83 - 14.33</td>
<td>GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Range, Output</td>
<td>71 - 86</td>
<td>GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Power Drive</td>
<td>0 - 6</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td>10</td>
<td>13</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>5Fo Harmonic Isolation (with respect to the output signal level)</td>
<td>25</td>
<td>dBc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Fo Harmonic Isolation (with respect to the output signal level)</td>
<td>40</td>
<td>dBc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>12</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current (VD_{\text{AMP}1} + VD_{\text{AMP}2}) [1]</td>
<td>175</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current (VD_{\text{MULT}}) [2]</td>
<td>80</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Adjust VG_{AMP} between -2 to 0V to achieve 175 mA total on VD_{AMP1} and VD_{AMP2}.
[2] Adjust VG_X2, VG_X3 between -2 to 0V to achieve 1 - 2 mA on VD_{MULT}.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC1110* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

DOCUMENTATION
Data Sheet
- HMC1110: GaAs MMIC X6 Active Frequency Multiplier, 71-86 GHz Data Sheet

DESIGN RESOURCES
- HMC1110 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS
View all HMC1110 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
HMC1110
GaAs MMIC X6 ACTIVE FREQUENCY MULTIPLIER, 71 - 86 GHz

Output Power vs. Temperature [1]

Output Power vs. Drive Level

Output Power vs. VD_AMP
Supply Current, VD_AMP = +4V [1]

Output Power vs. VD_MULT
Supply Voltage, VD_AMP = +4V [1]

Output Power vs. VD_AMP
Supply Current, VD_AMP = +3V [1]

Output Power vs. VD_MULT
Supply Voltage, VD_AMP = +3V [1]

[1] Drive Level = +4 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC1110

GaAs MMIC X6 ACTIVE FREQUENCY MULTIPLIER, 71 - 86 GHz

Input Return Loss

Output Return Loss, RF input = 12.5 GHz

DC Power vs. Temperature, Pin = 4dBm
VD_MULT = +1.5V, VD_AMP = +4V

5th & 7th Harmonic Isolation, Pin = 4dBm
VD_MULT = +1.5V, VD_AMP = +4V

5th Harmonic Isolation vs. VD_MULT
Pin = 4dBm, VD_AMP = +4V

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
FREQUENCY MULTIPLIER - ACTIVE - CHIP

HMC1110

GaAs MMIC X6 ACTIVE FREQUENCY MULTIPLIER, 71 - 86 GHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier Drain Bias Voltage (VD_AMP)</td>
<td>+4.5 V</td>
</tr>
<tr>
<td>Multiplier Drain Bias Voltage (VD_MULT)</td>
<td>+3V</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>+10 dBm</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>146 °C</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>175 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T=85 °C)</td>
<td>1.55 W</td>
</tr>
<tr>
<td>Thermal Resistance (RjTh) (junction to die bottom)</td>
<td>58.1 °C/W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55 °C to +85 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 °C to 150 °C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 0, passed 150V</td>
</tr>
</tbody>
</table>

Outline Drawing

Die Packaging Information [1]

<table>
<thead>
<tr>
<th>Standard</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP-2 (Gel Pack)</td>
<td>[2]</td>
</tr>
</tbody>
</table>

[1] Refer to the “Packaging Information” section for die packaging dimensions.

Notes:
- ALL DIMENSIONS ARE IN INCHES [MM]
- DIE THICKNESS IS .004”
- TYPICAL BOND PAD IS 0.005” [3.003] SQUARE
- BACKSIDE METALLIZATION: GOLD
- BOND PAD METALLIZATION: GOLD
- BACKSIDE METAL IS GROUND.
- CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.
- OVERALL DIE SIZE ± .002

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
Pad Descriptions

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Function</th>
<th>Description</th>
<th>Pin Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3, 4, 6, 8, 10, 12, 13, 15, 17, 18</td>
<td>GND</td>
<td>Ground pads must be connected to RF/DC ground.</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>LO_IN</td>
<td>This pin is DC coupled and matched to 50 Ohms.</td>
<td>LO_IN</td>
</tr>
<tr>
<td>5</td>
<td>VD_MULT</td>
<td>Supply voltage for multiplier. External bypass capacitors of 100 pF, 0.01 µF and 4.7 µF are recommended.</td>
<td>VD_MULT, VD_AMP1, VD_AMP2</td>
</tr>
<tr>
<td>7, 11</td>
<td>VD_AMP1, VD_AMP2</td>
<td>Supply voltage for input and output amplifiers. External bypass capacitors of 100 pF, 0.01 µF and 4.7 µF are recommended.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>VG_AMP</td>
<td>Gate control for amplifier. External bypass capacitors of 100 pF, 0.01 µF and 4.7 µF are required. Adjust VG_AMP between -2 to 0V to achieve 175 mA total on VD_AMP1 and VD_AMP2.</td>
<td>VG_AMP</td>
</tr>
<tr>
<td>16, 19</td>
<td>VG_X2, VG_X3</td>
<td>Gate control for multiplier. External bypass capacitors of 100 pF, 0.01 µF and 4.7 µF are recommended. Adjust VG_X2, VG_X3 between -2 to 0V to achieve 1 - 2 mA on VD_MULT.</td>
<td>VG_X2, X3</td>
</tr>
<tr>
<td>14</td>
<td>LO_OUT</td>
<td>This pin is AC coupled and matched to 50 Ohms.</td>
<td>LO_OUT</td>
</tr>
<tr>
<td>Die Bottom</td>
<td>GND</td>
<td>Die bottom must be connected to RF/DC ground.</td>
<td>GND</td>
</tr>
</tbody>
</table>
GaAs MMIC X6 ACTIVE FREQUENCY MULTIPLIER, 71 - 86 GHz

Assembly Diagram
Mounting & Bonding Techniques for Millimeterwave GaAs MMICs

The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note).

50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2).

Microstrip substrates should be located as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils).

Handling Precautions

Follow these precautions to avoid permanent damage.

Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against > ± 150V ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer’s schedule.

Wire Bonding

Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils).
Notes